

MODERN2020

Development of a Monitoring Concept for a HLW Repository in Germany in Close Relation to the Safety Case

Michael Jobmann BGE TECHNOLOGY, Germany

Development and Demonstration of monitoring strategies and technologies for geological disposal

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement n° 662177 BGETEC has received co-funding from the German Federal Ministry of Economics and Energy.

Actors

Pictures taken from: https://www.bfe.bund.de/DE/soa/akteure-aufgaben/akteure-aufgaben.html

National Monitoring Body

- Pluralistic composition to represent public participation
 12 recognized public personalities
 6 free nominated citizens (2 young persons, 16-27)
- Free to deal independently with any scientific issue in the field of radioactive waste disposal (may ask for support from scientific organizations)
- Ask questions to regulator and implementer at any time and make public statements and comments
- Can get access to all files either at implementer, regulator or any other involved institution

The NBG is assigned to

Picture taken from:

https://www.bfe.bund.de/DE/soa/akteure-aufgaben/akteure-aufgaben.html

Monitoring Concept

Repository design from the German ANSICHT Case

- I. Shall be based on representativeness
- II. Shall be developed as a learning concept

Performance Targets and Processes

Safe Site FEP-0	specific	Borehole seal	Safety Function	eal shall minimize uid flow into the ut of it.	
Process	Description of selected processes		Performance Targets		
No.			PT-1	PT-2	
1	Fluid inflow from the drift above through abutment and bentonite plug		Permeability of the	Swelling pressure	
Ш	Mechanical load on the abutment from above		bentonite element	of the bentonite	
111	Convergence of the emplacement borehole (after emplacement)	⇒	k ≤ 1·10 ⁻¹⁷ m ²	$p_q \approx 1 MPa$	
IV	Fluid pressure from below due to thermal expansion and gas generation		PT-3 Expansion of the	PT-4 Bentonite element	
V	Saturation evolution of the bentonite plug		bentonite element	shall be free of	
VI	Swelling pressure evolution of the bentonite plug		\leq 3% of its length	tensile stresses $\sigma_{III}^{eff} = \sigma_{III} - p \ge 0$	
VII	Chemical alteration of minerals (swelling pressure reduction)				
VIII	(Heat flow) temperature evolution in bentonite plug		Construction requirements		
IX	Fluid flow through the bentonite plug out of the borehole				
x	Displacement of the abutment in direction to the drift above				

Monitoring Concept for Borehole Seal

Similar concepts for

- drift seals
- backfill
- sacrificial boreholes
- shaft seals (ongoing)

Decision points: **IDP** = Implementer / **RDP** = Regulator / **KDP** = Key

Conclusion

- I. Monitoring concept = Learning Concept
 - improvements of EBS components or the Monitoring components/concept
 - evaluation of the potentially added value of post-closure monitoring
- II. Preliminary technical concepts have been developed for EBS monitoring
- III. Monitoring results are intended to be used as
 - > an input to repository programme decisions
 - > a tool for providing transparency and participation

Many Thanks!

Development and Demonstration of monitoring strategies and technologies for geological disposal

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement n° 662177 BGETEC has received co-funding from the German Federal Ministry of Economics and Energy.

Backup-slides

Election Procedure

Monitoring Concept for Sacrificial Borehole

BGE TEC

Specific plug monitoring (Example)

BGE TEC

Response plan (Example)

Continue monitoring until decision for termination is made

As part of the root cause analysis

Perform predictive calculations to analyse whether the performance target can still be met or if the limit curve will probably be exceeded

Decide to re-open, analyse, and re-build the monitored plug or parts of it

	Green area			
Continue me	Continue monitoring until decision for termination is made			
Check resul	Check results (DBs, TBs) on a regular basis (e.g. 1/month)			
Report resul	t results to regulator on a regular basis (e.g. balf-vearly)			
Record/docu data, way of	iment results in a specific monitoring data base (raw data, processed/qualified processing/qualifying, etc.)			
Trigger area				
1	Report the arrival at the trigger area to regulator at its first occurrence			
Conservation	(even if only 1 sensor is involved)			
General	Potentially decide to interrupt disposal operation			
	Continue monitoring			
2a	Consider sensing system failure and check sensing system seriously			
	Consider sensor(s) recalibration if possible			
system	Consider signal correction if possible			
behaviour	Consider to exchange sensor(s); depends on time of failure occurrence			
2b	Consider to improve sensors of the same type to be installed at following monitoring boreholes or use other sensor types			
LL (Lessons Learned)	Consider to use the <i>dummy area</i> for tests			
Trigger area				
За	Perform model analyses of deviating results			
	Identify input parameter configuration leading to the deviating curve			
	Perform predictive calculations to analyse whether the performance target can still			
Plug	be met or if the limit curve will probably be exceeded			
behaviour	depend on the course of the curve)			
	Limit curve will probably be exceeded: decide on action to be taken			
	Potentially decide to re-open analyse and re-build the monitored plug (or part of this			
	plug; depending on the time that has already passed); includes re-opening of the drift			
	Depending on the re-opening analysis other - not monitored - plugs may be			
	re-opened and re-build as well (depending on the time that has already passed)			
3b	Check whether there are hints indicating that deviations are due to monitoring			
ш	Consider to improve plug design and material for following boreholes			
	Consider whether installation improvements of plug components are necessary for			
	future installations in following boreholes (may include QC improvements)			
	Consider to use the dummy area to perform further tests			
1	Alarm area			
1	Benort the arrival at the alarm area to regulator.			
General	Continue monitoring until decision for termination is made			
2	Perform additional model analysis to check whether there is a chance that the curve goes back			
Plug	into the trigger area Decide whether to wait and see or to take action			
behaviour				
	Decide to re-open, analyse, and re-build the monitored plug or parts of it; includes re-opening of the drift			
	Depending on the re-opening analysis other - not monitored - plugs may be re-opened and re-build as well			
3	Improve the complete plug design			
ш	Improve installation procedures (and QC)			
	Consider to use the dummy area to perform further tests			
	Consider to change the disposal concept (e.g. reduce the amount of heat release);			
	decide whether to retrieve the waste from already filled boreholes (max. 10 boreholes in test			

reholes. May include a second test pha

Repository Phases & Key Decisions

License

- DPD-1 = Disposal Programme Decision
- DPD-2 = Disposal Programme Decision
- DPD-3 = Disposal Programme Decision
- TD = Technical Decisions (multiple)
- DPD-4 = Disposal Programme Decision
- GD-1 = Governance Decision
- GD-2 = Governance Decision
- GD-3 = Governance Decision

- start construction
- end of dummy phase / start of test phase ?
- include waiting period (WP)?
- start routine waste disposal ?
- seal emplacement fields ? / use response plan ?
- include observation period ?
- end of observation / start final closure ?
- post-closure monitoring ?
- end monitoring ?

