

Learning from Sociotechnical Analogues for Monitoring of DGD

A Comparative Perspective on Wind Farms, Fracking, Carbon Capture and Storage (CCS) and Deep Geological Nuclear Waste Disposal

Dörte Themann Modern2020 Final Conference Paris E-Mail: d.themann@fu-berlin.de

Agenda

- Status Quo, NWG in Germany and Leading Questions
- > Methode: Analysis of Sociotechnical Analogues
- Sociotechnical Ensembles
- > The Analysed Major Infrastructure Projects
 - Wind Farms
 - ➢ Fracking
 - Carbon Capture and Storage
 - Final DGD Repository for Radioactive Waste
- Main Results & Conclusion

The Status Quo: An Unsolved Problem

Spent fuel interim storage Ahaus Source: dpa

Morsleben Source: dpa

- 370,000 tonnes of heavy metal of spent fuel (WNA 2018)
- No permanent repository for highly radioactive waste
- Double jeopardy: safety and security issues (Brunnengräber 2019)
- Challenges for future monitoring concepts → Known and unknown risks; "unknown unknowns" (Eckhardt/Rippe 2016)
- Deep-rooted scepticism towards authorities and technology

Nuclear Waste Governance in Germany

- Decide, Announce, Defend (D-A-D Strategy)
- Gorleben as an example how it won't work
- Development of a strong anti-nuclear movement
- Working Group on the Selection Process for a Repository Site (AkEnd) (1999-2002)
- StandAG Repository Site Selection Act (2013/2017)
- Commission for a Permanent Storage of Radioactive Waste (2014-2016)
- Commission to Review Funding of Nuclear Phase-out (2016)

Freie Universität

Leading Questions and Hypotheses

Berlin

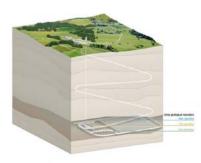
<u>Questions:</u>

- What are the main challenges related to a long-term monitoring of such infrastructure projects and what are possible strategies to tackle these challenges related to the disposal of high-level radioactive waste?
- What is the role of public and civil society actors in the planning, deployment and monitoring of major energy infrastructure projects?

Hypothesis:

für Umweltpolitik

- We claim that the development of monitoring systems without civil society's involvement is not effective and recommendable. A broad inclusion of different actors can help to design and improve monitoring systems.
- Critical questioning of future monitoring concepts and a topical dialogue between natural and social scientists, engineers, politicians and civil society with addition of local and lay knowledge can help identifying problems, mitigating conflicts and enables a more robust decision-making.

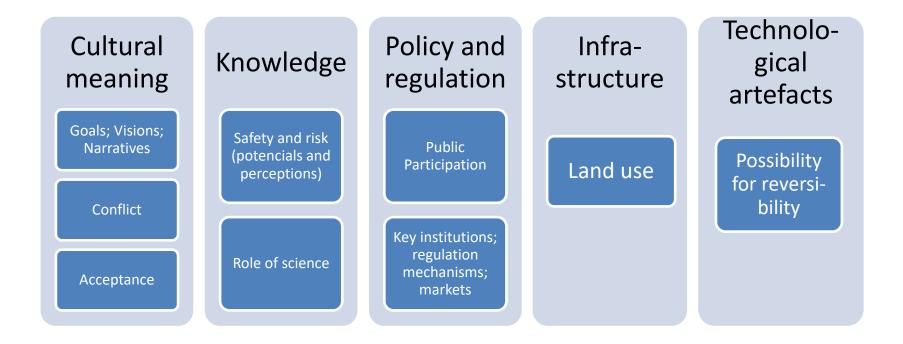

Method: Analysis of Sociotechnical Analogues

- Analysis of similiar infrastructure projects
- creation of an indirect experience horizons
- translate the findings regarding solutions of problems as well as upcoming social problems from one socio-technical context into another

🖗 Berlin

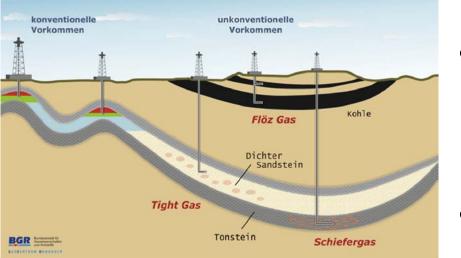
Freie Universität

Sociotechnical Ensembles


- Complexe sociotechnical interdependencies between different elements (Bijker)
- Transitions (Geels) as an interplay of multidimensional developments on three analytical levels:
- "niches" Anti-nuclear-movement, renewable energies
- "**regimes**" state-industrial nuclear complex
- "socio-technical landscape" Tschernobyl (1986), Fukushima (2011), Energy transition

Criteria-based Assessment

Wind Farms

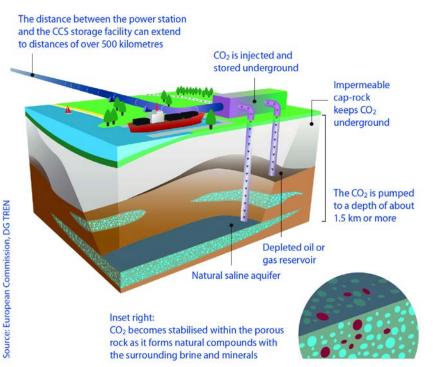

By Brett Sayles

- One technical environmental innovation of the last decades (Ohlhorst 2009)
- Decentrale, renewable
- Developped from niche to widely recognized form of energy
- Protests against wind farms increase (Di Nucci /Krug 2018)

Freie Universität

Fracking

Source: BGR 2013

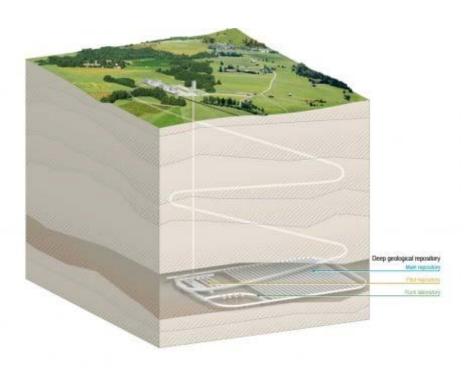


 A method to increase hydraulic conductivity e.g. to extract oil and gas from unconventional deposits

- In Germany mainly used in lower-saxony (325 fracs for tight gas, 3 fracs for shale gas)
- Most unconventional gas is produced in USA (543.575 billion m³/a) (Statista 2017)

Carbon Capture and Storage (CCS)

Source: European Commission


- Method to inject CO₂ into underground and store it there
- Aim: less CO₂ in atmosphere, avoidance of more climatewrecking gases
- 17 mayor projects in the world (Schmidt-Hattenberger 2018)
- IPCC: "negative emissions"
- Highly controversial whether this technology works and if it is necessary to meet climate agreements

Freie Universität

Stere Deep Geological Disposal (DGD)

Source: Eidgenössisches Nuklearsicherheitsinspektorat ENSI (2019)

- Isolation of high level radioactive waste for hundred thousands of years
- Some final repositories for low and medium level waste
- Additional research is need towards several aspects: barrier systems, host rock, etc.

Freie Universität

Main Results I

Technical challenges

- "underground" technologies such as fracking, CCS and DGD, there is a lack of monitoring strategies / technologies (SRU 2013; Meyer-Renschhausen und Klippel 2017; Gullion 2015)
- lot of scientific uncertainties and unforeseeable factors ("relative knowledge"; "unknown unknowns")
- No financial incentive for innovation for DGD

Main Results II

Social challenges

- CCS, fracking and DGD, trigger similar fears and negative risk perceptions
- Ability and competence of regulators and operators to deal with the risks and uncertainties is perceived as low
- Dominance of natural sciences and engineering; Disciplinary knowledge claims are highly contested → battle for sovereignty over the interpretation
- less trust in energy supply companies and state to protect citizens; science as part of the "regime"
- Conflicts rise and new protest culture (Bornemann and Saretzki 2018); past abuse of confidence can effect present projects

Freie Universität

Berlin

Conclusion

"(r)isk assessment and management are difficult when the form and extent of risks are unknown, which shifts decision making from the regulatory into a political arena (Falkner and Jaspers, 2012)." (Neville and Weinthal (2016) p. 590).

 \rightarrow Societal debate about values and value trade-offs is necessary

Broader inclusion of different types of knowledge in monitoring systems

- Inter- and Transdisciplinary research
- Start of participation at an early point
- Integration of local and lay knowledge

Develop a social monitoring strategy

• Sensitivity towards past, present and future societal developments and dynamics; notice change of discourse and change of values

The National Civil Society Board (NBG)

Public activity of the NBG

Pictures by Dirk Seifert

Forschungszentrum für Umweltpolitik Citizen hearing 2017 (NBG 2017) Picture by Susanne Possinger

Thank you for your attention.

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

References

- BGR (2013): Fracking was ist das? https://www.bgr.bund.de/DE/Themen/Nutzung_tieferer_Untergrund_CO2Speicherung/Downloads/Fracking.pdf;jsessionid=1351F872BF6EE6F8636E3861
 0995C19C.1 cid284? blob=publicationFile&v=5
- Brunnengräber A. and Görg C. (2017): "Nuclear waste in the Anthropocene. Uncertainties and unforeseeable time scales in the disposal of nuclear waste" GAIA, 26 (2) 96-99
- Brunnengräber, Achim (2019): The wicked problem of long term radioactive waste management. Ten characteristics of a complex technical and societal challenge, in: Brunnengräber, Achim; Di Nucci, Maria Rosaria (Eds.) (2019): Conflicts, Participation and Acceptability in Nuclear Waste Governance. An International Comparison (Volume III), Wiesbaden: Springer VS
- Di Nucci M. R., Brunnengräber A., and Isidoro Losada A. M. (2017): "From the "right to know" to the "right to object" and "decide". A comparative perspective on participation in siting procedures for high level radioactive waste repositories" Progress in Nuclear Energy, 100 316-325
- Di Nucci, Maria Rosaria; Krug, Michael (2018): "Conditions enhancing the socially Inclusive and environmentally sound Uptake of Wind Energy: The Case of Germany". Journal of Environmental Policy and Administration Vol. 26
- Eckhardt A. and Rippe K. P. (2016): Risiko und Ungewissheit? Bei der Entsorgung hochradioaktiver Abfälle vdf, Zürich
- ENSI (2019): Deep geological repositories. https://www.ensi.ch/en/waste-disposal/deep-geological-repository/
- European Commission (2017): Carbon capture, utilisation and storage. https://ec.europa.eu/jrc/en/research-topic/carbon-capture-utilisation-and-storage
- Nationales Begleitgremium (2017): Ergebnisbericht Bürger/innen-Anhörung Standortauswahlgesetz. http://www.nationalesbegleitgremium.de/SharedDocs/Downloads/DE/Downloads_BuergeranhoerungStandAG_02-2017/ErgebnisberichtB%C3%BCrgerInnenAnh%C3%B6rung.pdf?__blob=publicationFile&v=5
- Neville, Kate J.; Weinthal, Erika (2016): Mitigating Mistrust? Participation and Expertise in Hydraulic Fracturing Governance. In: Review of Policy Research 33 (6).
- Ohlhorst, Dörte (2009): Windenergie in Deutschland. Konstellationen, Dynamiken und Regulierungspotenziale im Innovationsprozess. Wiesbaden: VS Verl. für Sozialwiss (VS Research Energiepolitik und Klimaschutz).
- Schmidt-Hattenberger, Cornelia (2018): Globale Entwicklung der CCS-Technologie und ihre Rolle als mögliche Klimaschutzmaßnahme. In: Energiewirtschaftliche Tagesfragen 68 (7/8), S. 35–38.
- Statista (2017): Fracking. Dossier. Hg. v. Statista. Online verfügbar unter https://de.statista.com/statistik/studie/id/37920/dokument/fracking-statistadossier/, zuletzt geprüft am 11.12.2018.
- Welt.de (2014): Fracking ist in Deutschland schon längst Alltag. https://www.welt.de/politik/deutschland/article128356722/Fracking-ist-in-Deutschland-schon-laengst-Alltag.html
- World Nuclear Association (2018): "Radioactive Waste Management". (http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclearwastes/radioactive-waste-management.aspx)

