Derivation of Monitoring Parameters based on the Longterm Safety Assessment

P. Smith, B. Frieg, I. Gaus, P. Marschall & O. Leupin

Development of the methodology

 Methodology implemented in relational database tool (FileMaker)

- Refined iteratively in a series of meetings with chosen experts (co-authors)
- Methodology cross-checked against Modern2020 screening methodology

Methodology to identify monitoring parameters

0. Describe the system

- 1. Identify key, safety-relevant parameters
- 2. Consider (without consideration of technical feasibility) whether monitoring of these parameters would be of interest, and set priorities
- 3. Consider technical practicability of monitoring those parameters identified as being or first and secondary priority
- 4. Identify whether models exist for evolution of those parameters that can be monitored and whether safety-relevant criteria exist that parameters should meet
- 5. Assess overall rationale for monitoring those parameters identified in Steps 2 through 5

START: System description

Test facility (site-specific URL)

- Not necessarily a single facility (rather, a series of experiments at different locations)
- Provide the information required before the main facility can start operation (and for subsequent decisions)

Pilot facility

- Contains representative fraction of waste
- Serves as demonstration facility for emplacement technology
- Provides information to better understand the behaviour of barrier system and to check predictive models
- Allows early detection of any unexpected and undesirable system evolution
- Provides input for decisions regarding commencement of operations and eventually the closure of entire facility

STEP 1: key, safety-relevant parameters

nagra

STEP 1: key, safety-relevant parameters

Filename

Requirement related to canister wall thickness

- The wall thickness should ensure long-term structural integrity and that the radiation dose rate at the canister outer surface is < 1000 mSv/hr in order to preclude radiation-induced corrosion.

Requirement on the radiation dose itself

 Radiation dose at the canister surface after leading and sealing of the canister should be less than 1000 mSv/h to avoid radiation-induced corrosion.

STEP 2: Prioritisation

- Prioritisation based on
 - likelihood of (and uncertainty in) changes to parameter value during monitoring period
 - safety-relevance of such changes

Priority	Basis	Examples			
High priority	Significant changes expected during the pre- closure monitoring period (especially if there are significant uncertainties associated with those changes)	 Near-field temperature Near-field pore pressures 	Input to STE		
Secondary priority	Significant changes not expected, but cannot be completely excluded	 Geometry - underground structures 		P 3	
None	Significant changes in a parameter can be confidently ruled out or are irrelevant to safety	 Thickness of uncorroded canister wall 		\bigotimes	Park

7

STEP 3: technical feasibility of monitoring

	High- and secondary-priority para		
Amei	nable to monitoring in practice?		
Yes	Examples		Determine
	Fluid (pore) pressure; pH porewaTemperature	how, where and when to	
No	Reason	Examples	monitor
	Technology development needed	• Far-field stress changes; reactivation of faults	Park
	Parameters measured once or infrequently	Porewater composition	Park
	Indirectly determined parameters	Heat fluxesEDZ permeability	Feedback to STEP 1

n	a	g	ra	•
		-		-

Tentative schedule and opportunities for measurements/monitoring

nagra

Example of the assessment of a potential monitoring technology

pH probe

TRL 9

	Acoustic consing	~			
	Acoustic sensing			Details of selected technology	Delete this technology or edit parame
	En probe				
				pH probe	
	Evapometer				
	Extensioneter			Need for maintenance or repeated calibration	
	FDR				
	Fibre optics for distributed pore pressure			Yes	
	Fibre optics for strain			Data transmission (choose from drop-down list)	
	Fibre optics for temperature			Wired	
	Flowmeter				
	Gamma counter			Level of readiness (choose from drop-down list)	
	Gas sampling and inline spectometry			TRL9: Actual system proven in operational environ	ment
	Gas threshold pressure test			Decemptors that can be menitored with this technology	-
	Geiger counter			Parameters that can be monitored with this technolo	9y
	Humidity sensor capacitive			pH (Opalinus Clay porewater)	
	Hydraulic testing			pH (SF/HLW buffer porewater)	
	Ion selective probe			pH (operations tunnel porewater)	
	LVDT displacement sensor				
	Mechanical/total stress pressure sensor				
	Mini ventilation tests				
	Modular mini packer systems (MMPS)				
	pH probe				
	Piezometer / Pore pressure sensor				
	Porewater extraction and laboratory analysis		l		
	Psychrometers			Comments	
	Radar (geophysical)				
	RTDS: PT100/PT1000				
	Seismics (Geophysical)				
	Strain meter				
	TDR	~			
-					

STEP 4: Models and safety-relevant criteria exist?

Example of temperature evolution

STEP 5: Overall rationale for monitoring

	Prioritisation		
	Secondary	High	
<u>Currently</u> with criteria	4	2*	
No criteria	16	14	

Rationale for monitoring Set as rationale						
1.	Build confidence that each barrier meets its requirements and conforms with reference assumptions	Yes: high priority				
2.	Build confidence that potentially detrimental phenomena do not compromise safety	Set as rationale?				
	a. Confidence in general understanding of the phenomena	Yes: high priority				
	b. Confidence in input parameters for modelling the phenomena	Yes: high priority				
	c. Confidence in model predictions, including adherence to criteria	Yes: high priority				
3.	Build confidence in the parameter values used for the evaluation of other key parameters					
4.	Other reasons to monitor this parameter	Set as rationale?				
	a. Support decision making (e.g. when to backfill a section of repository)	Yes: high priority				
	b. Stakeholder demands/reassurance	No				
	c. Other grounds	No				

*Fluid pressure (Opalinus Clay) and temperature (Opalinus Clay)

Comparison with Modern2020 Screening Methodology

 Each of the steps of Nagra's methodology can be mapped onto the generic Modern2020 Screening Methodology; a few differences noted:

Modern2020	Nagra
Translates processes into parameters	Also includes parameters that define requirements and model assumptions
-	Prioritises parameters on the basis of significant or relevant changes
-	Acknowledges some parameters are evaluated indirectly from other (monitored) parameters
Includes development of monitoring plan and programme	-*

*Work currently in progress

Thank you for your attention!

