

Development and Demonstration of monitoring strategies and technologies for geological disposal

Modern2020

Methodology for Qualifying the Monitoring Components

Jean-Michel Matray¹, E Bohner², K Raunio², S Delépine-Lesoille³, M Landolt³, J Bertrand³, M Kronberg⁴, L-E Johannesson⁴, J Vestricht⁵, P Mégret⁶, F Martinot⁷, M Rey⁸ and J-L Garcia-Siñeriz⁸

1 - IRSN, 2 - VTT, 3 - Andra, 4 - SKB, 5 - SCK - CEN, 6 -Univ Mons, 7 - EDF, 8 - AMBERG

10 April 201, Cité Universitaire Paris

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement n° 662177

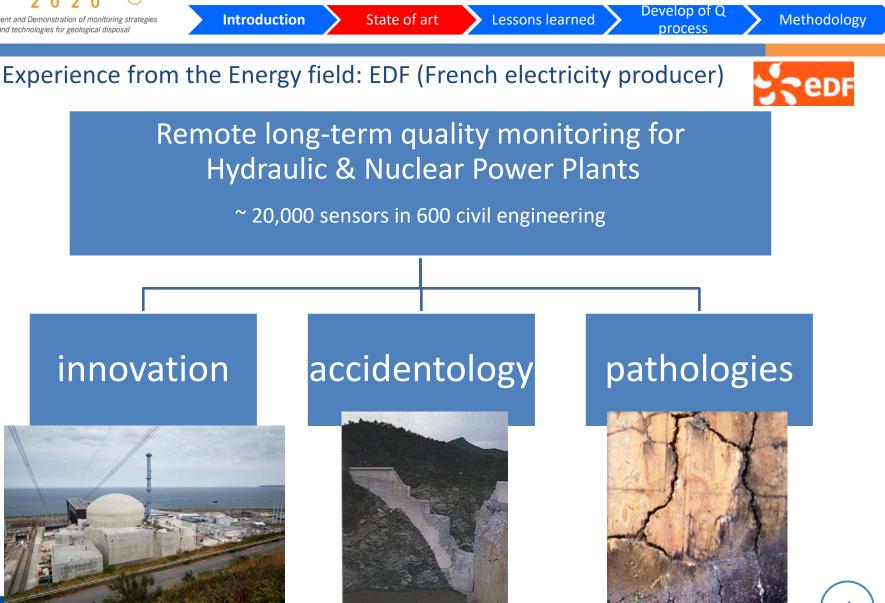
Qualification? Definition from the NEA glossary on NPP ageing

Demonstration through testing, analysis or experience of the capability of a Monitoring Component to function within acceptance criteria during specified operating conditions while retaining the ability to perform its safety functions under normal or degraded scenarios.

Objectives

To propose a global methodology for the metrological and functional qualification of the monitoring component (MC)

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement n[•] 662177


Outline

- State of the art Analysis of the transferable experience from industrial fields.
- Lessons learned Case studies of long lived components in operation at URLs at conditions close to those expected in a DGR.
- **Development of a qualification process** i) How to select monitoring components to be tested on testing benches, ii) How to test the selected components with the aim of producing robustness tests and accelerated ageing under harsh conditions.
- To propose a global **methodology** for the metrological and functional qualification of the monitoring component.

Methodology for Qualifying MCs

training programme 2014-2018 under grant agreement n

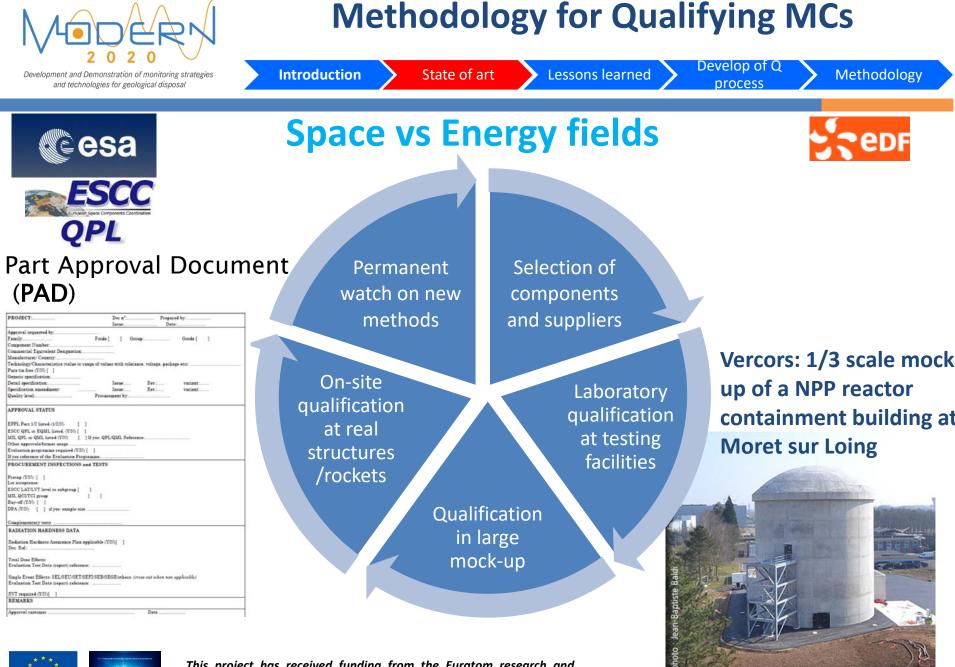
• 662177

Experience from the Space field:

ESA (European Spatial Agency)

- esa
- ESCC (European Space Component coordination)

The European organism for space qualification of EEE components in the ESA Member States

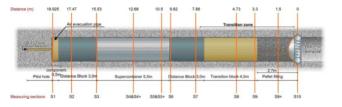


Space ≠ Energy and Repository fields

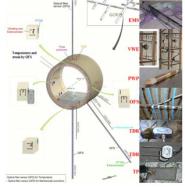
- Vibrations (strong at the rocket take-off)
- Radiations (≠ nuclear energy sector)
- Large temperature range (-40°C to +80°C)
- High vacuum

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement n^o 662177

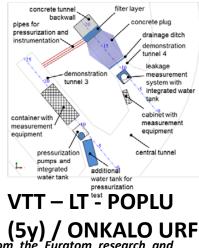

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement n° 662177


Lessons learned

Selection of long-term experiments


Introduction

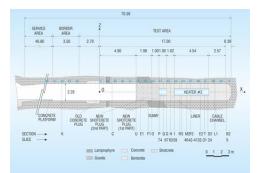
SKB – LT - Prototype Repository "in-situ" (8y) /Äspö URL



SKB – LT - MPT "in-situ" (5y) /Äspö URL

State of art

Andra – Dem - GCR (6y) / CMHM URL


PT-H2 PT-H2 PT-H2 PT-H2 PT-H2 PT-H2 PT-H2 PT-H3 PT-H3

Methodology

Develop of Q

process

IRSN – LT – SEALEX (6y) / Tournemire URL

NAGRA/AMBERG – Dem - FEBEX "in-situ" (18y) /GTS URL

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement n[•] 662177

Lessons learned

Develop ot Q

process

Methodology

Feedback from long-term experiments: main conclusions

Introduction

Partner	ANDRA	NAGRA AMBERG	IRSN	SKB	VTT	SKB
URL/LAB (country)	LMHM (F)	GTS (CH)	Tournemire (F)	Äspö (S)	Onkalo (FIN)	Äspö (S)
Dismantled long-term and demonstrator experiments	GCR	FEBEX in situ				
Long-term experiments			SEALEX	MPT	POPLU	PROTOTYPE
Duration (y)	6	18	6	5	5	8
Total number of sensors						
Wired/Wireless	-	176/0	149/105	194/33	132/0	328/0
Total/Survival	134/9	176/108	149/113	227/99	132/20	328/125
% survival rate	93%	39%	24%	56%	85%	61%

State of art

- Short duration and no 100% survival rate
- Highest survival rate attributed to the massive use of high TRL MC and to passive measuring methods → need for a longer acquisition time
- Lowest survival rate are due to experiments using « new » technologies (eg wireless) and/or to problems occuring during the swelling of the bentonite-based seals → need for a better isolation/reinforcement and improve the transmitter/receiver exchange

Development of a qualification process

- 1 Selecting the Monitoring Components
 - 1. Verification of metrological characteristics and performances
 - 2. Sensitivity to influence parameters.
 - 3. Verification of functional and ergonomic characteristics and design.
 - 4. Verification of compliance with current standards.
 - 5. Operation: input/output power, operating temperatures, wavelength, modulation, consumption, end of life, etc.
 - 6. Testing: evaluation and qualification plan, test methods, screening definition.
 - 7. Quality and Product Assurance (focus on reliability and traceability): define the customers' reviews, the list of documents, the hardware acceptance.
- 8. Verification of the Technology Readiness Level (TRL).

Methodology

- 2 Testing at laboratories (*in situ*, off-site)
 - 1. Define the list of physical quantities to be tested. Define the main influence parameters.
 - 2. Define the list of functionalities to be tested: same as 1. but wrt to the functional aspect of the operator interface, the dialogue with the PC or the central datalogger, the associated software.
 - 3. List the tests to be carried out: **robustness, ageing**.
 - 4. Select the laboratories, preferentially accredited.
 - 5. Establish the test conditions.
 - 6. Prioritize the tests (laboratory or on-site).

Lessons learned

Introduction

State of art

Corrosion test - 1 month (NSS) 20 **Deformation &** Weighing & leakage Visual iterations detection inspection Pressurization (15-20 MPa) & at 85°C

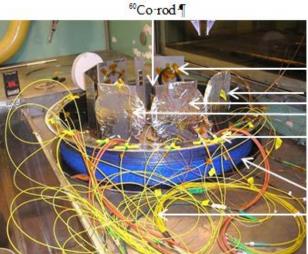
A testing process to verify the degree to which a system or component can function correctly in the presence of stressful environmental conditions

Develop of Q

process

Methodology

(VTT) Cyclic tests to simulate the long-term behaviour of MC in **EBS** environment as for the Nordic repository case


Lessons learned

Irradiation = the only real time-quantifiable test

Introduction

State of art

A testing process to accelerate artificially the normal degradation of a monitoring component (**MC**) with time of use

Develop of C

process

Definition from the NEA glossary on NPP ageing

Fiber at room temperature¶

Fibers inside heating ¶ Silicones¶

Connections to standard ¶ pigtails for on-line ¶ measurement¶ Strain sensing cables¶

Standard pigtails.¶

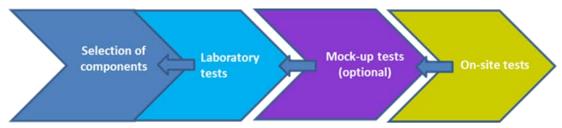
IRMA/IRSN irradiation tests Nov. 2017 – Dose rate 3kGy/h - TID 1MGy

Methodology

RITA/CEN irradiation tests Oct. 2017 – Dose rate 0.41-0.66 kGy/h, TID < 10kGy

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement n^o 662177

12


- 3 On-site testing of the whole MC system under realistic conditions
 - At site-specific URLs (when radiation is not involved)
 - In large surface mockups (optional)
 - At DGR in dedicated disposal cells with real radioactive waste packages (obviously the most representative conditions)

Main conclusions

- Strong synergy between Energy, Space fields and DGR needs with a qualification process in 3 stages: i) Selection of components, ii) The laboratory qualification and iii) On-site qualification.
- Despite a strict selection of the best technical solution of the moment, in situ and long-term experiments performed at URLs or at large mock-ups suggest improvements to be checked in situ.
- The Initiatives for the development of a generalized qualification procedure must combine robustness, ageing and on-site tests with an optional mock-up off-site test.

Global sketch for the qualification of monitoring components in DGRs

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement n[•] 662177

Development and Demonstration of monitoring strategies and technologies for geological disposal Introduction S

State of art <a>Lessons learned

Methodology

	Receive: / /
ADOC - Approval DOCument for a monitoring comp	onent qualification

Project:	Doc n*:	
Prepared by:	Date:	
Approval requested by:		
Family:	Component:	
Technology Detail specification:		

Yes

Not

Approval status:

Evaluation programme required:

Component selection

TRL: Procureme	nt by:	
Influence parameters with measurement range and sens	itivity:	
Sensitivity to influence parameters	🗆 Ok	Not Ok
Verification of functional and ergonomic characteristics	🖾 Ok	Not Ok
Verification of metrological characteristics	🗆 Ok	Not Ok
Verification of compliance with current standards	Ok	Not Ok
Requirement for additional tests (in case not ok)	Yes	D No
If yes, test required Lab - Robustness	Yes	D No
Lab - Ageing tests	Yes	D No
In situ – Long-term	Yes	D No
In situ – demonstration	Yes	D No

Laboratory test (testing of components/combined components under adverse conditions)

 Test of robustness: 	Ves 1	□ No
Laboratory name:	Certification/accreditation number:	
Detailed Specifications: (type of test,	steps, iterations):	
Reporting:	Number	Date
Results:	Dok	Not Ök
2. Ageing tests	Ves 1	No No
Laboratory name:	Certification/accreditation num	nber:
Detailed Specifications: (type of test,	steps, iterations):	
Reporting:	Number	Date
Results:	Dok	Not Ök

On-site test (testing of the whole components under realistic conditions

 Tests at URLS: 	Yes Yes	No No
URL:	Certification/accreditation number:	
Detailed Specifications: (type of test, steps, ite	rations):	
Reporting:	Number	Date
Results:	D Ok	🗋 Not Ök
 Testing at witness structure/cells at DGR 	TYes	□ No
DGR:	Certification/accreditation num	ber:
Detailed Specifications: (type of test, steps, ite	rations):	
Reporting:	Number	Date
Results:	D Ok	🗌 Not Ök

Proposal of an Approval DOCument (ADOC) for a monitoring component qualification

Study reported in D36

Thank you for your attention

