

Sicherheit in Technik und Chemie

10.04.2019

Niches of fiberoptic sensing: from large-strain applications to acoustic emission monitoring

Pavol Stajanca

Division 8.6 Fibre Optic Sensors

Federal Institute for Material Research and Testing (BAM)

- National research, testing and advisory body for safety in technology and chemistry
- BAM
 - Dep. 8: Non-destructive testing
 - Div. 8.6: Fiberoptic sensors

Various competences in fiberoptic sensing (FOS):

- Point sensors (FBGs, Interferometers)
- Distributed FOS (Rayleigh, Brillouin, Raman)
- Polymer optical fiber sensors
- Development of novel FOS techniques
- Application/integration of fibers in structures

Fiberoptic sensors (FOS)

- Compact
- Lightweight
- Electrically passive •
- Immune to electromagnetic interference ۲
- High temperature/pressure/chemical/radiation resistance ۲
- Possibility of real-time remote sensing ۲
- Multi-point & distributed sensing possible (long distances) •

hazardous and

difficult-to-access

environments

Distributed FOS

Light backscattering in optical fiber

- Rayleigh Material inhomogeneities
- Raman Thermal molecular vibrations (optical phonons)
- Brillouin Coherent material lattice vibrations (acoustic phonons)

Spatially-continuous distributed measurement over extended distances

Strain and temperature are the most common measurands

10.04.2019 Niches of fiberoptic sensing: from large-strain applications to acoustic emission monitoring

FOS markets

5

Strain and temperature monitoring of large civil, energy and geotechnical structures

FOS in nuclear waste management

Alternative FOS applications

Polymer optical fibers for large-strain sensing

Polymer optical fibers for radiation monitoring

Distributed vibration/acoustic sensing

10.04.2019 Niches of fiberoptic sensing: from large-strain applications to acoustic emission monitoring

Polymer vs. glass optical fibers

Polymer optical fibers (POFs)

Strain

Brittle material (glass)

Ductile material (polymer)

Stress

Higher elasticity and lower stiffness High ultimate strain limit (up to 100%) Easy handling (user friendlier) Ease of processing Cheap Drawback -> higher attenuation **PMMA SI POF** Cytop GI POF Silica SI SMF 980 µm core 9 µm core 62.5 µm core 1 mm cladding 125 µm cladding 500 µm over-cladding

LIEHT ET AL., TELE JEHSOIS 7 (2007), 1550-1550.

9 10.04.2019 Niches of fiberoptic sensing: from large-strain applications to acoustic emission monitoring

Large-strain sensing **PMMA POF**

38 39 distance [m]

40

41

42

Large 1 mm step-index PMMA POF

Commercial OTDR interrogator

Limited monitoring range (<100m) and resolution (>0.5m)

Krebber, Current Developments in Optical Fiber Technology (IntechOpen, 2013), 319-344.

Niches of fiberoptic sensing: from large-strain applications to acoustic emission monitoring 10 10.04.2019

Large-strain sensing Cytop POF

- Low-loss graded-index Cytop POF
- Self-developed I-OFDR interrogator

BAM

Circulator

FUT

EOM

Laser source

RF source

Signal

VNA

- Improved performance
 - Extended monitoring range up to 500 m
 - Strain limit in excess of 100%
 - Spatial resolution down to single millimetres

Alternative FOS applications

Polymer optical fibers for large-strain sensing

Polymer optical fibers for radiation monitoring

Distributed vibration/acoustic sensing

10.04.2019 Niches of fiberoptic sensing: from large-strain applications to acoustic emission monitoring

13

Fiberoptic distributed radiation measurement

Distributed measurement of fiber attenuation profile

Distributed dose detection with POF

Distributed RIA measurement

- Cytop POF + 650 nm OTDR
- Gamma irradiation (20 Gy) with ⁶⁰Co source

Fiberoptic distributed radiation monitoring for NWD applications

High-resolution & high-sensitivity distributed dose measurement

- Radiation leak detection
- Short-term NW container integrity control

Measurement of dose distribution around the cask

Alternative FOS applications

Polymer optical fibers for large-strain sensing

17

Polymer optical fibers for radiation monitoring

Distributed vibration/acoustic sensing

10.04.2019 Niches of fiberoptic sensing: from large-strain applications to acoustic emission monitoring

Coherent vs. Incoherent detection

OTDR

- Incoherent pulsed light source
- Detects overall amount (amplitude) of light reflected from scattering centers at given fiber position

C-OTDR

- Coherent pulsed light source
- Detects superposition (interference) of light reflected from scattering centres at given fibre position

BAM

Highly-dynamic strain (vibration) measurement

- Acquisition rate up to 100 kHz
- Monitoring range up to 80 km
- Spatial resolution down to 1 m
- Sensitivity down to nanostrains

Applications

Monitoring of large/extended structures

http:/powerspecialties.com

Applications

Monitoring of large/extended structures

Liehr et al., Opt. Express 26 (2018), 10573-10588.

21 10.04.2019 Niches of fiberoptic sensing: from large-strain applications to acoustic emission monitoring

Applications

22

NWD-relevant applications

- Perimeter control (third-party intrusion)
- Seismic/geological monitoring

Cox et al., CSEG Recorder 2 (2012) 7-13.

Summary

POFs for strain sensing

Large strain limit Easy integration

23

• SHM of repository parts

Distributed radiation sensing

Detection and dosimetry of radiation

- Radiation leak detection
- Container radiological profiling

Distributed acoustic sensing (DAS)

High-sensitivity vibration measurement

- Repository perimeter control
- Repository geological monitoring

第-18 第-20

Optical fiber

Se altrais
Se altrais
Se altrais
Se altrais

2 To straig

125. alex

distance [m]

Liehr et al., IEEE Sensors 9 (2009), 1330-1338.

Acknowledgements

POLYTEC project consortium •

TRIPOD project consortium ٠

BAM AGIFAMOR project consortium ٠

BAM BLEIB project consortium •

Sicherheit in Technik und Chemie

THANK YOU FOR YOUR ATTENTION